
Enhancing Operational Deliberation in a Refinement Acting Engine with
Continuous Planning

Jérémy Turi, Arthur Bit-Monnot, Félix Ingrand
LAAS-CNRS, Université de Toulouse, INSA, CNRS, Toulouse, France

jeremy.turi@laas.fr, abitmonnot@laas.fr, felix@laas.fr

Abstract

Recent technological developments in robotics and artificial
intelligence may enable the deployment of robots in many as-
pects of our lives. As the complexity of robotic platforms in-
creases, deliberation algorithms need to be improved, in par-
ticular to handle an increasing number of agents, to manage
complex goals and tasks, and to evolve in more open envi-
ronments in which unforeseen events should be dealt with au-
tonomously. Among the deliberation functionalities deployed
to provide the best level of autonomy: planning, monitoring,
learning, observing, we focus here on acting.
We present OMPAS, a refinement-based acting engine that
executes high-level tasks by refining them into a set of lower-
level tasks and commands. OMPAS uses a custom Lisp di-
alect (SOMPAS) to define the behavior of the robotic agent.
SOMPAS provides primitives to handle concurrency and re-
sources, and allows the synthesis of planning models, thanks
to the restricted core language, and the explicit identification
of acting decisions. The engine has been extended to deploy
a continuous planning module, using the synthesized models,
to look ahead and guide the decisions of the acting system in
order to e.g., avoid deadlock, or optimize the completion of
several parallel tasks. We provide an evaluation of the over-
all approach on the control of a fleet of robots in a simulated
logistic platform.

1 Introduction
With recent technological advances in robotic and artificial
intelligence, an increasing number of processes are auto-
mated and replaced by robotic agents. While initially, only
repetitive and clearly identified tasks were automated, the
research on deliberation algorithms allows the deployment
of more general automated agents, that can adapt to vari-
ous situations thanks to their skills. The agent deliberative
power allows it to act autonomously at a certain level, which
depends on its abilities to (i) perceive its environment and
have a representation of the world in which it operates, (ii)
act to change the said world, and (iii) reason on which set
of actions to perform to fulfill its goals while taking into ac-
count operational constraints such as deadlines, exogenous
events, etc. The present contribution focuses on the third el-
ement, i.e. the deliberation capabilities of the agent.

As stated by Ghallab, Nau, and Traverso (2016), auto-
mated deliberation can be separated in two parts: a planning
system generating a plan composed of a set of actions to

perform; an acting system in charge of supervising the exe-
cution of plans and adapting the behavior of the agent to the
current state of the system.

Both the planning and acting subsystems need models to
represent the capabilities of the agent as a set of actions.
Planning systems conventionally use descriptive models,
which define an action using pre-conditions and effects, re-
spectively defining the states in which the action is applica-
ble and the state transitions resulting from its execution. Act-
ing systems rely on operational models that are executable
programs used to perform actions. They can be defined with
any executable language, allowing the use of generic pro-
gramming constructs such as branchings and loops, mak-
ing them generally more expressive than descriptive mod-
els, the latter using specific descriptive languages such as
PDDL (Fox and Long 2003) and ANML (Dvořák et al.
2014). Because the acting and planning systems are based
on different models, the interaction of the two systems may
be more difficult, especially if there is a semantic mismatch
between the descriptive model and the operational model.

We propose to use the acting system Operational Model
Planning and Acting System (OMPAS) (Turi and Bit-Monnot
2022a), an enhancement of the Refinement Acting Engine
(RAE) (Ghallab, Nau, and Traverso 2016), targeting multi-
ple agents and concurrent activities. OMPAS extends RAE
by adding the native support of concurrency in operational
models, and managing the interleaving of parallel tasks
thanks to a system handling the acquisition of shared re-
sources. OMPAS uses a hierarchical representation of the
agent skills, here defined with SOMPAS, a dedicated acting
language based on Lisp (Steele 1990), from which planning
models can be extracted (Turi and Bit-Monnot 2022b).

The present contributions adds an online planning module
to OMPAS, used to guide runtime deliberation in the act-
ing engine. To do this, we use a hierarchical temporal plan-
ner that indefinitely searches and optimizes a plan for all
current missions, while taking into account updates of the
state, and new missions. The generation of planning mod-
els is improved to support the automated analysis of more
operational models, and in particular models requiring con-
currency and resource access. We compare our work to a
previous implementation of OMPAS with the factory simu-
lator Gobot Sim presented by Turi and Bit-Monnot (2022b).

2 Related Work
The study of deliberation architectures have shown the im-
portance of coupling a planning and a supervision system to
make a robotic agent autonomous, and several approaches
have been explored in the literature.

Language-based systems such as RAE (Ghallab, Nau, and
Traverso 2016) and the Procedural Reasoning System (PRS)
of Ingrand et al. (1996) are based on the iterative refine-
ment of tasks into executable procedures, composed of com-
mands or tasks. The refinement is done at runtime, which
avoids having to generate the full command sequence be-
fore executing. While PRS is a goal-oriented system, RAE
is task-oriented, using a formalism that ressembles Hierar-
chical Task Networks (HTN), and should ease the integra-
tion of HTN planners. Propice-Plan (Despouys and Ingrand
1999) extends PRS to improve its refinement process, both
with an anticipation module and continuous planning, each
one of them working at a different horizon. In the same way,
the refinement process of RAE has been improved by us-
ing an anytime planner such as UPOM (Patra et al. 2021),
using rollouts in a Monte Carlo Tree Search (MCTS) rein-
forced with learning. While UPOM provides a solution at
any time, it does not guarantee a valid plan as opposed to the
Run-Lazy-Refineahead algorithm (Bansod et al. 2021). As
RAE may face problems in scaling up, Dec-RAE (Li, Patra,
and Nau 2021) is a formalization of the decentralized ver-
sion of the RAE algorithms. OMPAS (Turi and Bit-Monnot
2022b,a) is yet another version of RAE that proposes a uni-
fied framework for planning and acting, using the dedicated
acting language SOMPAS to define operational models, that
support concurrency and resource sharing, and from which
planning models can be extracted. However, previous ver-
sions of the automated generation of planning models lacked
the analysis of concurrent and resource primitives, and plan-
ning was only used to guide local choices, which we gen-
eralize in the present work by using an online planner that
takes into account all current tasks.

The Plan-Exec architecture is another approach to delib-
eration. Remote Agent (RAX-PS) (Muscettola et al. 1998) is
the first successful integration of a deliberation architecture
composed of a planner and an execution module on a space
explorer. IDEA (Muscettola et al. 2002) and T-REX (Mc-
Gann et al. 2007) propose a first attempt at a unified repre-
sentation for the different level of abstraction of the system.
They relied on constraint based languages which can make
the programming of the agent challenging. Other systems
such as IxTeT-Exec (Ingrand et al. 2007) and more recently
FAPE (Bit-Monnot et al. 2020) use a Plan-Exec architecture
based on temporal planners to take into account time, and
dedicated execution modules, mostly used to monitor the ex-
ecution of a fully instantiated plan. The CASPER/ASPEN
system (Chien et al. 2000; Rabideau et al. 2000) integrates
(i) a planner which plans at different levels of abstraction
and horizons to improve the reactivity of the system, and
(ii) iterative repair techniques and conflict checking systems
making it more robust to hazard. ROSPlan (Cashmore 2015)
and PlanSys2 (Martin et al. 2021) are two propositions of
generic plan-exec frameworks to use planning in robotic sys-
tems; Both use planning models based on PDDL (Fox and

Long 2003), and decouple planning from execution.
CRAM (Beetz, Mösenlechner, and Tenorth 2010) is an-

other system using a Lisp dialect to program the agent be-
havior, in which parameters of skills can be instantiated at
the very last moment to adapt more easily to runtime con-
straints, but does not propose a tight integration with a plan-
ning system to guide its choices.

Some works on Belief Decision Intention (BDI) Systems
propose to optimize the overall behavior of the system by
improving the interleaving of tasks. Summary information is
used by Clement and Durfee (1999) to generate deadlock-
free interleaving of plans. An interleaving of plans at the
command level is proposed by Yao and Logan (2016) thanks
to MCTS rollouts, improving performances compared a sim-
ple Round Robin, but does not ensure deadlock-free inter-
leaving, which can be solved using sound planning. The
system of Sardina, de Silva, and Padgham (2006) resorts to
planning for some explicit choices defined in skills, which
our work extends to any choice of the acting system.

3 Acting system
3.1 OMPAS, an extended version of RAE
OMPAS (Turi and Bit-Monnot 2022b) is an acting system
that executes tasks by refining them down to a set of lower-
level tasks and commands considering a model of the be-
havior of the agent, and the state of the system. The agent
is modeled as a tuple (C, T,M) where C is the set of com-
mands representing the low-level capabilities of the agent,
T is the set of tasks corresponding to the high-level capabil-
ities of the system, and M the set of methods corresponding
to the skills of the agent. A method is an operational model
that achieves a high-level task using lower-level tasks and
commands. A method m ∈ M is associated with a particu-
lar task t ∈ T , and is defined by a list of parameters (possibly
inherited from t), pre-conditions that define the set of states
in which the method is applicable, and a body defined in an
executable language. The acting system supports a partially
observable state and stochastics command outcomes. How-
ever, it has not been designed to support perception uncer-
tainty, but no architectural limitations prevents it to support
it in a future version. The project and its documentation are
available at https://github.com/plaans/ompas

OMPAS uses a dedicated acting language to program the
agent behavior using the Lisp dialect SOMPAS. The lan-
guage has dedicated acting primitives to execute a command
or a task to be refined with exec, get the current value of a
state variable with read-state or select an arbitrary element
from a set with arbitrary. The system has been extended
by Turi and Bit-Monnot (2022a) to add the native support for
concurrency in its main algorithm, and to expand the acting
features of the system, by not only refining tasks into meth-
ods, but also managing resource requests in a dynamic way
to improve the interleaving of tasks. Thus, SOMPAS uses
concurrency primitives to start an execution in a new thread
using async, to await its result, or interrupt the computation
if necessary. A system of resources has been added to syn-
chronize the execution of programs in SOMPAS. Resources
can be manipulated using acquire to request its usage, and

release to give the resource back. An example of an oper-
ational model using SOMPAS is presented in Figure 1 and
features some new acting primitives.

params: ?p package, ?m machine
pre-conditions: none
body: (begin

(define ?r (arbitrary (read-state
instances robot)))

(define h1 (acquire ?m))
(define h2 (acquire ?r))
(exec carry ?r ?p ?m)
(release h2)
(exec process ?m ?p))

Figure 1: An example of an operational model defined with
SOMPAS. This model is a skill used in Gobot Sim that pro-
cesses a package ?p on a given machine ?m. An arbitrary
robot ?r is selected, and as other tasks might be using ?r and
?m, both resources are acquired before using ?r to bring the
package ?p to ?m. Then, ?p is processed on ?m.

3.2 Guiding acting processes
In the previous versions of OMPAS, acting processes are lo-
cally and reactively handled, and do not take into account
either the execution of other tasks, or possible future states
of the system. To address both matters, we propose to use
a planner in a continuous fashion to adapt to the evolution
of the system, and guide all acting processes, which are: the
refinement of tasks at runtime; the instantiation on the fly of
arbitrary variables and; the allocation of resources to ongo-
ing methods. The analysis of the returned plan should give,
(i) the most promising method for each task not yet refined,
(ii) instantiation for arbitrary variables, (iii) an order access
to resources shared between current tasks.

3.3 Update of the deliberation architecture
Continuous planning requires the synchronization between
the supervision system and the automated planning system.
In order to do that, two new components are integrated to
OMPAS. The first one is the planner that continuously looks
for either a suitable solution to the planning problem of the
current execution state, or a better solution in terms of global
makespan (time to execute all the ongoing tasks). The sec-
ond one is called the Acting Manager and keeps track of
all acting processes that OMPAS faces. It both integrates the
traces of executed acting processes, and those anticipated by
the planner. By representing all acting processes in the Act-
ing Manager, we simplify the update of the planner using
traces of all executed acting processes, and give a unique in-
terface to provide guidance for upcoming acting processes,
simplifying the usage of a global planner. Figure 2 presents
the interaction of the Acting Manager with, on one side, the
Execution Manager, and on the other side, the Planner.

Acting and Execution Manager The Execution Manager
is responsible for the supervision of the execution of all cur-
rent tasks in separated threads. When an acting process ap is
executed, the Execution Manager requests guidance to the

OMPAS

Execution Manager Acting Manager

Planner

State

transport(o1,l7)

drive(t1,l8)

pack(o1)

monitor
-fuel(t1)

. . .

Platform

Environment

User TasksReports

Commands

Updates
Events

Traces

Advices
ProblemsPlans

Figure 2: The new internal architecture of OMPAS that inte-
grates the Acting Manager and the Planner.

Acting Manager. If ap has been anticipated by the planner,
the Acting Manager advises the supervisor of the choices the
planner made. If the choices are still valid in the current con-
text, the supervisor resorts to them to solve ap. Otherwise,
reactive algorithms are used to find a valid solution. For ex-
ample if a task must be refined, and the planner found that
the best to try method is m, the execution system will first
check that m is still applicable in the current context, other-
wise it selects an arbitrary method among those applicable.
In all cases, the Execution Manager sends back the choices it
made at runtime as well as other values such as start and end
times of executed actions, which inform the process values
and therefore constrain the planning problem.

Acting Manager and Planner As the planning problem
should anticipate the execution state of the system, the Act-
ing Manager updates the planner upon evolution of the sys-
tem. Updates are triggered on the instantiation of parame-
ters or timepoints, new tasks to address and updates of the
state. The planner should take into account those updates,
and either repair its plan, or replan if necessary. When the
planner finds a new solution, it returns an instantiated plan
from which acting choices can be extracted and stored in the
Acting Manager.

Unified representation of acting processes The Acting
Manager uses a unified representation of the state of the sys-
tem to bind the execution traces to the corresponding vari-
ables in the planning model. The state is represented as an
Acting Tree, where a leaf is an Acting Process, and repre-
sents the hierarchical links between processes. An example
of Acting Tree is given in Figure 3. Any acting process is de-
fined by an execution interval, and other variables depending
on the process kind, which are the following:
• Root: virtual task that contains references to all the high-

0:Root

1:t1 p1 m1

2:m1 p1 m1

3:arb(0) 4:acq(0) 5:acq(1) 6:act(0) 7:act(1)

.

Figure 3: An example of Acting Tree of a task refined into the
operational model defined Figure 1. The operational model
is partially executed. The three remaining dashed and grayed
processes have been planned, and will be used to guide the
execution of the operational model when needed, but might
adapt their values regarding evolutions of the system.

level tasks that OMPAS should address.
• Action: represents the execution of either a command or

a task, and contains the list of arguments of the action,
i.e. the label of the action and the value of its parame-
ters. In case it is a task, it contains references to all the
refinements of the task: current, failures and suggested.

• Refinement: method that refine a given task. It is defined
by a list of arguments and a set of references to acting
processes called within the method.

• Arbitrary: call to the acting primitive arbitrary. It con-
tains the selected value.

• Acquire: represents the acquisition of a resource. It con-
tains the name of the resource, the required quantity as
well as the dates of request, acquisition and release of
the resource.

Variables used in acting processes have two different
kinds of value to differentiate instantiation by the Planner
or the Execution Manager. When the planner finds an in-
stantiation i for a variable v, the value is marked as Planned
which means that i can be suggested to the Execution Man-
ager upon request for guidance. The variable receives the
Executed value e when the variable is updated by the Exe-
cution Manager, which transforms the planning variable as
a constant with value e. This allows to have a unique vari-
able used by both the planner and the execution, abstracting
updates from both components.

Identification of processes As different components of
the system must refer to the same Acting processes, we
use a referring system to uniquely identify those processes.
Processes are identified in two ways: a unique absolute Id
set at runtime, and a relative Label defined by the kind
of the process (Root, Action, Refinement, Arbitrary, Ac-
quire) and an instance number unique in the context of
the method. For example in Figure 3 we could either re-
fer to the first arbitrary process using its Id 3, or rela-
tively to the root process with the absolute path Root/Ac-
tion(0)/Refinement(0)/Arbitrary(0), or the path relative to
the method 2/Arbitrary(0).

4 Instantiation of the planning problem
In the precedent section, the OMPAS/SOMPAS system has
been presented along its extension including a continuous
planning module and an Acting Manager necessary to syn-
chronize the execution and the planner. In this section, we
present the selected planner, and how the planning problems
are encoded using the Acting Tree of the Acting Manager.

4.1 Hierarchical temporal planner
As OMPAS uses hierarchical operational models, it seems
more natural to look for a hierarchical planner. As the plan-
ner should guide the order access of resources, it should
explicitly reason about time. The planner that seems to
best meet our requirements is Aries, the extension of the
LCP (Godet and Bit-Monnot 2022) for hierarchical plan-
ning. It features a representation of a planning problem
using hierarchical chronicles that are defined by a tuple
(V,X,C,E, S) where V is the set of variables (parameters)
of the chronicle, X a set of constraints over V , C a set of
timed conditions, E a set of timed effects, and S a set of
subtasks.

4.2 Encoding of the problem
To use this planner, we need to define the planning problem
PΠ as a tuple (C0, CI , P∆). C0 is the initial chronicle that
holds the known values of the state represented as a set of ef-
fects, including the initial state and the known transitions, as
well as the goals and tasks to achieve, respectively encoded
as conditions and subtasks in C0. CI is the set of chronicle
instances present in the encoding of the problem, and P∆

a set of chronicle template that can be used to refine sub-
tasks of C0 ∪CI that are not yet refined by any chronicle of
CI . Going back to the Acting Manager, the chronicle C0 is
constructed using both the Root process that contains all the
high-level tasks, and the perceived states of the system. CI is
the set of Refinements of all current tasks that have been de-
clared in the Acting Manager. P∆ contains the templates for
all actions and methods that the system may execute. Each
template can be instantiated to refine a particular subtask of
C0 ∪ CI , in particular when a model is needed for an action
not yet present in the Acting Tree.

4.3 Exploitation of the plan
With such encoding of the planning problem, we expect the
planner to deliver useful information to guide the different
acting processes which are: the refinement of abstract tasks,
the selection of arbitrary values, and access order for the
shared resources. As the returned plan is a set of instantiated
chronicles, the plan is therefore analyzed in order to extract
the preferred values for each Acting Variable. To do that,
we define a set of Acting Process Binding that link the act-
ing variables of an acting process to the corresponding vari-
ables in the chronicle. An Acting Process Binding uses the
same reference system as the Acting Tree and the operational
models, such that the sole instantiation of those bindings are
needed to extract preferences from the plan.

Guidance of the resource acquisition One particular fea-
ture of OMPAS is its advanced management of resource al-
location, allowing an external tool to reshape the waiting
queue of each resource in order to optimize the overall pro-
cess. Here we use the planner to give an access order for each
resource. Using only the acquisition dates of each acquisi-
tion process of a particular resource, the Acting Manager
classifies them in an increasing order, and requests acquisi-
tion of the resource with the appropriate priorities to respect
the order given by the planner. However, we still want to
support reactive emergency requests, such as taking control
of a robot to recharge it. Therefore, we use a priority system
to accept both reactive and planned acquisitions. We define
a priority as a tuple (strong, weak), where priorities are first
sorted by their strong components in decreasing order, and
then by their weak components in an increasing way. Re-
active acquisitions are only using the strong part, whereas
planned acquisition have a constant strong priority, and a
variable weak priority.

To illustrate this system let us set the strong priority of
planned acquisitions to 10. We have four requests to ac-
cess a resource with the following priorities: {(10,1), (1000,
0), (5,0), (10,2)}. Once sorted the access order will be
{(1000,0), (10,1), (10,2), (5,0)}. By having this double level
of priority, we can sort requests from both the Execution
Manager and the Planner.

To conclude, by using the planner continuously the Act-
ing Manager can associate preferred values to the Execution
Manager when requested by looking for the best instanti-
ation for every Acting Variable that are still unbounded by
the execution. The planner can also identify preferred refine-
ment for tasks, which are suggested to the Acting Manager
and used during the online refinement processes.

5 Conversion of operational models
The precedent sections showed that an architecture with an
Acting Manager facilitates the use of any planner in an on-
line fashion to guide acting. A specific planner has been se-
lected that requests an encoding of the problem as chroni-
cles. In the present section we will describe the techniques
and rules used to extract chronicles automatically by analyz-
ing the body of operational models defined in SOMPAS.

5.1 Two-phase conversion
During the early development of OMPAS, a first set of meth-
ods and rules have been presented to extract chronicles from
the body of a method (Turi and Bit-Monnot 2022b). It was
based on a two-phase conversion process. First the body
was translated into a lower level formalism similar to Single
Static Assignment (SSA), which consists in translating each
expression into a sequence of primitive instructions. Sec-
ondly, the SSA form was converted into a chronicle by trans-
lating each primitive expression into a set of constraints,
conditions, effects and subtasks.

This two-phase conversion presented some advantages:
by splitting the conversion into two set of rules, we can ab-
stract the use of a specific language to define operational
models. However, the SSA form presents some limits, in

particular when it comes to represent concurrency. To ad-
dress this matter, we propose to evolve the SSA formalism
to a Flow Graph formalism to represent richer models.

Flow Graph Formalism A Flow Graph is a graph repre-
sentation of all paths that might be traversed through a pro-
gram during its execution. This representation is more suit-
able to check the coverage of a program, and the paths that
lead to failures, deadlocks and dead-ends. Previous work
focused on Control Flow Graph for Scheme-like language
by Shivers (1988), however as SOMPAS is simpler than the
generic Scheme, we have derived our own set of rules which
are sufficient for the extraction of planning models. In this
Flow Graph representation, we define a node of the graph
as a flow, which is defined by an interval composed of two
timepoints, a result, and a sequence of primitive instructions,
which are similar to the ones in the SSA form. As in SSA,
each label is uniquely defined, and the computation of each
primitive expression depends only on previously defined la-
bels.

5.2 Translation into a Flow Graph
The translation procedure follows the same steps as defined
by Turi and Bit-Monnot (2022b): the flow graph is derived
from a program by iteratively translating any expression
into a set of flows and branches, until each flow is com-
posed uniquely of a sequence of primitive computation. We
start with a body expression, representing the program of
the method we want to translate, which corresponding flow
graph is composed of a unique flow as follows:

[t] r ← body

The Flow Graph representation of the body is obtained us-
ing a procedure based on the rules defined below. The pro-
cedure translates every flow of the form:

[t] r ← expr

A rule will be applicable if the expr expression has the re-
quired form. When applicable, a rule will translate a single
flow node into a set of simpler flow nodes. Note that the first
seven rules are adapted from the corresponding rules in SSA
form (Turi and Bit-Monnot 2022b).

expr is an atom that evaluates to the value v. The corre-
sponding flow is the following:

[t] r ← cst(v)

expr is a list (f e0...en) In SOMPAS this corresponds to
the application of the function f to the ei parameters (where
each ei might be an arbitrary expression). Following the def-
inition of the Eval function, it is expanded to:

[t0, t1] r0 ← f

[t2, t3] r1 ← e1

. . .

[t2n, t2n+1] rn ← en

[t2n+2, t2n+3] rn+1 ← apply(r0, r1, . . . , rn)

Note that after this expansion, other expansions will be
triggered to, e.g., refine the computation e1 into primitive
expression or specialize the last line (function application)
into a primitive expression depending on the nature of r0.

expr matches (define var val) The operator defines a
name for the value val and returns nil. It is translated as
below and all subsequent uses of var name are replaced by
r1.

[t0, t1] r0 ← val
[t2] r1 ← nil

expr matches (begin e0...en) The operator begin evalu-
ates sequentially a list of expressions, and returns the result
of the last expression. It is translated as:

[t0, t1] r1 ← e1

. . .

[t2n, t2n+1] r ← en

where the original label r is given the value of the last ex-
pression en.

expr matches apply(r0, r1, . . . , rn) where r0 is a user de-
fined function f with parameters x1 . . . xn. In this case we
replace the expression by the body of the function f where
each parameter xi has been substituted by the corresponding
ri value.

[t] r ← body(f)[xi/ri]

expr matches apply(r0, r1, . . . , rn) where r0 is the read-
state primitive:

[t] r ← read− state(r1, . . . , rn)

expr matches apply(r0, r1, . . . , rn) where r0 is an action
symbol. In OMPAS, an action is either a command, or an
abstract task that should be refined into a method, and the
task ends when the method ends.

[t] r ← exec(r0, . . . , rn)

expr matches (if cond a b) The operator if first evaluates
the expression cond that returns the boolean r0. If r0 is true,
a is evaluated and is the result of the expression, otherwise
b will be evaluated. The result of expr is either the result of
a or b, which depends on r0.

[t0, t1] r0 ← cond

[t2, t3] r1 ← a

[t6] rif ← r1

[t4, t5] r2 ← b

[t6] rif ← r2

[t7] r ← rif

r0 ¬r0

expr matches (async e) The operator async evaluates in
a new thread the expression e, and returns a handle used to
refer to the concurrent execution, either to await on its result,

or interrupt it. Here the handle is bound to the flow of the
concurrent evaluation, and can refer to the execution interval
of e and its result. It translates as two flows representing two
threads bound by the timepoint t0.

[t0] r0 ← h [t0, h.end] h.result ← e

expr matches (await h) The operator await holds the
evaluation of the current thread until the result of the con-
current evaluation ce is available, returning the result of ce.
The corresponding flow graph is:

[t0] r0 ← h
[t2, t3] r ← await(r0)

expr matches (arbitary r1) In SOMPAS, the arbitrary
primitive returns an arbitrary element of a set. The corre-
sponding flow is:

[t] r ← arbitrary(r1)

where r1 should represent a finite set of elements, either a
list of atoms, or a symbol type.

expr matches (acquire ?r ?q) The operator acquire re-
quests a resource ?r with quantity ?q, and holds the execu-
tion until the resource is granted. It returns a resource-handle
that can be used to release the resource. The corresponding
flow graph is:

[t0] r0 ←?r
[t1] r1 ←?q
[t] r ← acquire(r0, r1)

expr matches (release rh) The operator release returns
the borrowed quantity of the resource. The corresponding
flow graph is:

[t0] r0 ← rh
[t] r ← release(r0)

Static analysis of Flow Graph Once a program has been
translated into its Flow Graph equivalent, static analysis is
performed to simplify the model and detect invalid branches.
Those post-processings are comparable to classical static
passes in compilers such as type analysis, constant propaga-
tion, and pre-evaluation of some primitive expression, made
possible by the side-effect-free semantics of most primitives
of SOMPAS.

Specialization for Planning The analysis produces a
computational model that matches the semantics of the op-
erational model. Our objective however is more specific as
we want to guide the acting system into an error-free exe-
cution path. Failures are represented as errors in the result
of the computation of an operational model. We enforce that
the result of an operational model cannot be of type Err,
and therefore remove the type error from its possible val-
ues. Then, using the typing system of SOMPAS and a type
propagation mechanism, the system identifies flows that nec-
essarily lead to errors, by looking for variables that have an
empty type, meaning that the execution in those flows are in-
valid. Then, the system constraint choices that can be made
to forbid taking those invalid path.

[s] arb← arbitrary({robot1, robot2})
[s, t1] r1← acquire(?m)
[t1, t2] r2← acquire(arb)
[t3, t4] nil← exec(carry, arb, ?p, ?m)
[t4] r4← release(r2)
[t5, e] nil← exec(process, ?m, ?p)

Figure 4: Translation of the operational model presented
Figure 1 into its simplified Flow Graph representation. The
resulting graph has been post processed to minimize the
number of nodes and labels used to represent the program.

The Flow Graph in Figure 4 is an example of translation
of the program defined in Figure 1.

5.3 Conversion of the primitives expressions to
build the chronicle

After generating and analyzing the flow graph, a set of rules
are used to build the corresponding chronicle, defined by a
set of variables, a collection of timed conditions and effects
parameterized with variables, and a set of partially ordered
subtasks. We extend the set of already defined rules by Turi
and Bit-Monnot (2022b) to support the conversion of the op-
erators async, await, arbitrary, acquire and release.

Branching flows Branching flow of the form presented in
the conditional (if) rule is converted as a synthetic task τ
associated to two methods: the first one represents the left
branch, and is composed of the pre-condition r0 and the
translation of the flows of the left branch, and the contrary
for the second method representing the right branch.

[t] r ← h where h is a handle A set of constraints
arise from this primitive expression. First as h represents
the spawn of a new thread, the constraint h.start = t
states that the evaluation starts the moment the thread is cre-
ated. The semantic of the language states that if all refer-
ences to h are released, then the asynchronous process of h
is interrupted, which can be considered as a failure in the
planning semantic. We define Drops =

⋃
drop(r) : r = h

the set of all moment the reference is dropped and enforce
h.end ≤ max(Drops).

[t1, t2] r ← await(h) As we await the process, we can
add the temporal constraint h.end ≤ t2.

[t]r ← arbitrary(set) An arbitrary flow is converted as a
disjunctive constraint, such that for each element ei ∈ set:∨

r = ei

[t1, t2] r ← acquire(r0, r1) To represent the acquisition
of r0 with quantity r1, we use virtual state variables rep-
resenting both the maximum and current capacity of a re-
source. We represent them as integers; atomic resources
have a capacity of one. An acquisition is defined by adding

variables = {s, e, p, arb, t1, t2, t3, t4, t5, t6, t7, t8,
r6, r7, r8, r9, r10, . . . }

constraints = {s ≤ t6, t1 ≤ t2, t2 ≤ t3, t4 ≤ t5, t5 ≤ e,

r6 = r9− r10, r7 = r8 + r10, . . . }
conditions = {[t6] capacity(?m) = r9,

[e] capacity(?m) = r8,

[s]max− c(?m) = r10, . . . }
effects = {[t6, t1] capacity(?m)← r6,

[e, t7] capacity(?m)← r7, . . . }
substasks = {[t3, t4] nil← (carry arb ?p ?m)

[t5, e] nil← (process ?m ?p)}

Figure 5: Partial chronicle resulting from the conversion of
the flow graph of Figure 4. Some elements have been omit-
ted to simplify the example.

the following elements to the chronicle

X = {q1 = q0 − q, q3 = q2 + q}
C = {c1 : [t2]capacity(r0) = q0

c2 : [t3]capacity(r0) = q2}
E = {e1 :]t2]capacity(r0)← q1

e2 :]t3]capacity(r0)← q3}

The value q is either r1, or the constant max − c(r0) if r1
is not present. The condition c1 and effect e1 represent the
acquisition of the resource, and c2 and e1 the release and t3
represent the release instant.

[t] r ← release(rh) The explicit release of a resource
can be triggered with the release primitive and constrains
the release date acqend = t. If rh can be released at var-
ious points in the program, we extend the constraint to
acqend = min(Releases), where Releases is the set of
all release dates. It should be noted that if a resource is
not released explictly, then acqend = max(Drops) where
Drops =

⋃
drop(r) : r = rh.

All those rules are used to build the chronicle of Figure 5
obtained from the Flow Graph of Figure 4. Once the chron-
icle is constructed, the same post-processings as described
by Turi and Bit-Monnot (2022b) are used to simplify the
structure of the resulting chronicle by removing unnecessary
variables, and reduce the number of constraints, conditions,
effects and subtasks.

6 Preliminary results
A first incomplete implementation of the presented system
has been used to compare it to the previous version of OM-
PAS. It can produce a plan to guide all acting processes de-
scribed above but could only be used in a Plan-Exec fashion,
i.e., first producing a plan and then executing. It requires ad-

2x
2

2x
2d 2x

6
2x

6d
0

100

200

Problems

Ti
m

e
in

se
co

nd
s

R
FA
FALRPTF
Aries
Aries-opt

Figure 6: Comparison of the mean execution time on 10 runs
to complete a task of n ∗ m(d), where n is the number of
package and m the number of jobs, d means robot displace-
ment are simulated. R, FA and FALRPTF are reactive strate-
gies whereas Aries and Aries-opt resort to a planner to guide
acting processes.

ditional engineering work to update the planner with execu-
tion traces and use it in a continuous fashion. We tested the
system with a single high-level task: on reception of the mis-
sion, the system holds its acting deliberation until the plan-
ner produces a valid plan containing the full execution path.
Then, the execution resumes, and this only plan is used to
guide acting decisions, and in case the execution shifts from
the plan, for example when a selected method to refine a task
is no more applicable in the current context, OMPAS resorts
to its reactive algorithms to act. The planner can be set up to
either find a first suitable plan or return an optimal plan in
terms of temporal makespan.

We tested the system on Gobot Sim
(https://github.com/plaans/gobot-sim), a factory simu-
lator , in which a fleet of robots is used to bring packages to
different machines, on which specific processes can be done
(Turi and Bit-Monnot 2022a). The goal is to treat all in-
coming packages, meaning doing all needed processes on a
package, and then deliver it. We compared the system to the
reactive strategies defined in (Turi and Bit-Monnot 2022a):
Random (R) that selects a random robot when needed,
First Available (FA) that takes the first available robot, and
First Available with Longest Remaining Processing Time
First (FALRPTF) that prioritizes tasks regarding remaining
processing time of packages. The first results have been
obtained Figure 6 for small instances of the problem, in
which only two packages should be processed. While they
show that the system works with the new planning models
and the integration of the planner, they do not prove that
using a planner gives better execution paths than only
resorting to reactive strategies. This can be explained first
by the simulation itself that is not rich enough to represent
system failures of robots or machines, or random arrival
of new package to process. Adding these more realistic
changes will worsen the Random (R) strategy and make
the new ones more appealing. Therefore, an extension of

the simulation to represent problems with more hazards
would be a first step to better evaluate OMPAS. Secondly,
the action duration time model is too simple, execution
time for actions (e.g., moving around, or machining) takes
a simple unit of time: one second. These actions should
use the distance to travel, which would produce more
accurate temporal plans. Last, currently the real execution
in simulation is almost instantaneous, and thus the planning
can hardly produce a plan before the state of the world
changes. In the real world, most robot actions will take tens
of seconds, and this will allow the planner to produce a
plan to be used by the acting manager. These improvements
in the simulation, the timing models and the execution
time/planning time ratio should help us show the interest of
the presented approach.

On a more positive note, in the given instances, the plan-
ner took a few milliseconds to find a first plan, and of a
few seconds to obtain an optimal one. This confirms that
the planner can be used online, although this should be con-
firmed on larger instances to assess its scalability.

7 Conclusion
OMPAS was first introduced by (Turi and Bit-Monnot
2022b), and later extended with concurrency and task in-
terleaving (Turi and Bit-Monnot 2022a). The version we
present here now includes a continuous planning component
to improve deliberation. Along with the planner, an Acting
Manager is proposed to ease the use of online planning in
a reactive acting engine, using a unified structure to rep-
resent the execution traces, and the produced plans. Plan-
ning models are still generated by automatically translat-
ing the executed operational models as chronicles, allowing
rich temporal representation of actions, in particular to rep-
resent concurrent subtasks inside methods. The procedure
to analyze the operational models has been improved, by
first resorting to a richer intermediate formalism to repre-
sent programs defined with the dedicated acting language
SOMPAS, and second to support the translation of concur-
rency and resource acquisition primitives. Preliminary re-
sults on the Gobot Sim domain are presented. With the sup-
port of temporally richer planning models, the acting system
could be guided by the planner, but produces mitigated re-
sults, which can be improved with a more realistic simula-
tion, a richer temporal modelling of the domain, and some
engineering work to finish the integration of the continuous
planning module. Current work is addressing these issues,
and seeks to integrate OMPAS on new robotic problems and
then, comparing it to other approaches, assess its usability,
scalability and genericity as an acting system.

8 Acknowledgments
This work has been supported by the European Union’s
Horizon 2020 research and innovation programme under
grant agreement No. 101016442 (AIPlan4EU) and by the
Artificial and Natural Intelligence Toulouse Institute - Insti-
tut 3IA (ANITI) under grant agreement No ANR-19-PI3A-
0004.

References
Bansod, Y.; Nau, D.; Patra, S.; and Roberts, M. 2021. Inte-
grating Planning and Acting With a Re-Entrant HTN Plan-
ner. In HPlan Workshop, ICAPS.
Beetz, M.; Mösenlechner, L.; and Tenorth, M. 2010. CRAM:
A Cognitive Robot Abstract Machine for Everyday Manip-
ulation in Human Environments. In IEEE/IROS. IEEE.
Bit-Monnot, A.; Ghallab, M.; Ingrand, F.; and Smith, D. E.
2020. FAPE: A Constraint-based Planner for Generative and
Hierarchical Temporal Planning. arXiv:2010.13121 [cs].
Cashmore, M. 2015. ROSPlan: Planning in the Robot Oper-
ating System. In ICAPS.
Chien, S.; Knight, R.; Stechert, A.; Sherwood, R.; and Ra-
bideau, G. 2000. Using Iterative Repair to Improve the Re-
sponsiveness of Planning and Scheduling. In AIPS.
Clement, B. J.; and Durfee, E. H. 1999. Theory for Co-
ordinating Concurrent Hierarchical Planning Agents Using
Summary Information. In AAAI/IAAI.
Despouys, O.; and Ingrand, F. 1999. Propice-Plan: Toward
a Unified Framework for Planning and Execution. In Euro-
pean Workshop on Planning.
Dvořák, F.; Bit-Monnot, A.; Ingrand, F.; and Ghallab, M.
2014. A Flexible ANML Actor and Planner in Robotics. In
PlanRob Workshop, ICAPS.
Fox, M.; and Long, D. 2003. PDDL2.1: An Extension to
PDDL for Expressing Temporal Planning Domains. JAIR.
Ghallab, M.; Nau, D.; and Traverso, P. 2016. Automated
Planning and Acting. Cambridge University Press.
Godet, R.; and Bit-Monnot, A. 2022. Chronicles for Rep-
resenting Hierarchical Planning Problems with Time. In
HPlan Workshop, ICAPS.
Ingrand, F.; Chatila, R.; Alami, R.; and Robert, F. 1996.
PRS: A High Level Supervision and Control Language for
Autonomous Mobile Robots. In IEEE/ICRA.
Ingrand, F.; Lacroix, S.; Lemai-Chenevier, S.; and Py, F.
2007. Decisional Autonomy of Planetary Rovers. Field
Robotics.
Li, R.; Patra, S.; and Nau, D. S. 2021. Decentralized Refine-
ment Planning and Acting. In ICAPS.
Martin, F.; Clavero, J. G.; Matellan, V.; and Rodriguez, F. J.
2021. PlanSys2: A Planning System Framework for ROS2.
In IEEE/IROS. IEEE.
McGann, C.; Py, F.; Rajan, K.; Thomas, H.; Henthorn, R.;
and McEwen, R. 2007. T-REX: A Model-Based Architec-
ture for AUV Control. In Workshop on Planning and Plan
Execution for Real-World Systems.
Muscettola, N.; Dorais, G. A.; Fry, C.; Levinson, R.; Plaunt,
C.; and Clancy, D. 2002. IDEA: Planning at the Core of
Autonomous Reactive Agents. In ICAPS.
Muscettola, N.; Nayak, P.; Pell, B.; and Williams, B. C.
1998. Remote Agent: To Boldly Go Where No AI System
Has Gone Before. Artificial Intelligence.
Patra, S.; Mason, J.; Ghallab, M.; Nau, D.; and Traverso,
P. 2021. Deliberative Acting, Online Planning and Learn-
ing with Hierarchical Operational Models. Artificial Intelli-
gence.

Rabideau, G.; Knight, R.; Chien, S.; Fukunaga, A.; and
Govindjee, A. 2000. Iterative Repair Planning For Space-
craft Operationsusing The ASPEN System. In ISAIRAS.
Sardina, S.; de Silva, L.; and Padgham, L. 2006. Hierar-
chical Planning in BDI Agent Programming Languages: A
Formal Approach. In AAMAS.
Shivers, O. 1988. Control Flow Analysis in Scheme. In
ACM SIGPLAN.
Steele, G. 1990. Common LISP: The Language. Elsevier.
Turi, J.; and Bit-Monnot, A. 2022a. Extending a Refinement
Acting Engine for Fleet Management. In ICTAI.
Turi, J.; and Bit-Monnot, A. 2022b. Guidance of a
Refinement-based Acting Engine with a Hierarchical Tem-
poral Planner. IntEx Workshop, ICAPS.
Yao, Y.; and Logan, B. 2016. Action-Level Intention Selec-
tion for BDI Agents. In AAMAS.

